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Abstract—Decreases in patellofemoral pain have been demon-
strated with brac ing; however, the mechanisms of pain reduc-
tion remain unclear. Our purpose was to evaluate the hypothesis 
that patellofemoral bracing decreases peak pres sure on the ret -
ropatellar surface through an increase in patellofemoral contact 
area. Nine cadaveric knees were tested du ring simulated free-
speed walking with no brace, a knee sleeve, two different patel-
lar stabilization sleeves, and a wr ap-style patellar stabilization 
brace. C ontact area  and pressure were mea sured using a 
dynamic pressure sensor located in the patellofemoral joint. For 
the unbraced knee, contact area and peak pressure varied with 
knee fl exion angl e, rangi ng from 0 .30 ± 0.3  cm 2 an d 1 .80 ±  
1.7 MPa at full extension to 2.28 ± 0.5 cm2 and 4.19 ± 1.7 MPa 
at peak knee flexion. All braces  increased contact a rea, while 
the wrap-style bra ce decrea sed peak pressure ( p < 0.0 01). 
Sleeve braces  compress the  quad riceps tendon causing the 
patella to engage the trochlear groove earlier during knee flex-
ion. The wrap-style brace reduced peak pressure by shifting the 
location of highest pressure to a region with increased articular 
cartilage thickness. Sleeve braces may be useful for treatment 
of patellar subluxation disorders, while wrap-style braces may  
be effective for treatment of disorders associated with degenera-
tive cartilage changes.

Key words: biomechanics, bracing, contact pressure, gait, in 
vitro si mulation, k nee, orthotics, p atellofemoral m echanics, 
patellofemoral pain, pressure measurement.

INTRODUCTION

Patellofemoral p ain (PFP) sy ndrome is de fined as  
pain originating from the patellofemoral articulation and 
associated structures that ex cludes ot her intra-articular 
and peripatellar pathology [1–2]. Because PFP syndrome 
is a diagnosis of exclus ion, the current clinical definition 
may encompass s uperficially simila r symptoms arising 
from a number of discret e causes [3]. PFP is a common 
knee disorder in sports-re lated injury medicine [4–8]; 
however, the  pathophysiology of PFP is no t clearly 
understood [4,9].

Current literature suggests that the etiology of PFP is 
multifactorial [9–11] and h as been closely associated 
with patellofemoral malali gnment and maltracking [12–
14]. Abnormal patellar tracking changes, particularly lat-
eral tracking, may lead to increased patellofemoral con-
tact pre ssure and subsequent a ctivation of noc iceptive 
fibers in the subchondral bone, resulting in pain [4,9,15–
16]. Abnormalities in other factors related to contact 
pressure (e.g., contact area, location of pressure [15], and 
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joint stress [4,16–17]) may also  contribute to the devel-
opment of PFP.

Athletes and other pati ents with anterior knee pain 
are often persistent  in pursuing treatment  for PFP syn-
drome because participation in sports and daily activities 
may be substanti ally af fected by the pain [9]. Ef fective 
treatment is crucial because chronic PFP limits mobility 
and may lead to arthritis and permanent disability [9,18]. 
Perhaps due to the heterogeneous nature of PFP syn-
drome, ef fective trea tments that are s uccessful in a  
majority of c ases have remained elusive . In a retrospec-
tive study of 25 0 athletes, Blønd and Hansen found that 
many athletes continue to have problems even after a full 
nonoperative treatment program [19].

Conservative treatment of PFP syndrome often 
includes taping or bracing for patellar realignment/stabi-
lization [9, 20]. While previo us stu dies have rep orted 
decreases in late ral pa tellar translation with bracing 
under sta tic conditions  [21–23] and decre ased contac t 
pressure and proximal shift of  the patella wit h the appli-
cation of i nfrapatellar strap s [2 4], so me stud ies h ave 
shown no effect on patellar alignment with bracing [25]. 
One recent study reported that bracing decreased both 
lateral tilt and translation of the patella during dynamic 
loading [12], and subjective improvements in knee stability 
and p ain h ave been repo rted with b racing [8 ,20,26]. 
Despite clinical decreases in PFP symptoms with bracing 
treatment, the speci fic me chanism by  which braci ng 
reduces pain remains unknown. Further complicating the 
matter is the fact that a wide range of pat ellofemoral 
bracing products exist and e ach brace may employ a dif -
ferent strategy to achieve symptom relief. For example, a 
previous study has shown increased efficacy of complex 
patellar stabilization braces compared with simpler 
modalities (i.e., knee sleeve designs, neutral taping) [12], 
while other s have shown that applicat ion of either pro -
duces a similar effect [27–28].

The purpose of this study was to  compare parameters 
associated w ith patellofemoral contact pressure (contact 
area, peak pressure, peak pressure location, and center of 
pressure) during dynamic simulated knee flexion-extension 
under a range of conditions: (1) no brace, (2) a knee sleeve, 
(3) two dif ferent patellar st abilization sleeves, and (4) a 
wrap-style pat ellar s tabilization brace. The hy pothesis of 
this study was that all patellofemoral braces would increase 
patellofemoral contact area while decreasing peak pressure 
compared with the unbraced knee.

METHODS

Nine fresh-frozen lower limbs (5 female, 4 male; 
mean a ge = 62.7 years, ra nge 52 to 75 years; 3 left, 
6 right) were used in the cu rrent study . Systemic or 
degenerative disea ses were  excluded by review of the  
donor history, and each kne e was visually inspecte d to 
rule out macroscopic evidence of any previous knee sur-
gery, substantial osteoarthritis, or apparent joint deformi-
ties. Each specimen was  thawed for 24 hours at room 
temperature prior to testing and was  regularly h ydrated 
with normal s aline. Each leg was  transecte d just below 
the level of the greater trochanter . Care was taken to 
ensure that enough inta ct soft tissue wa s pre sent above  
the knee to allow for proper brace application.

After minimal skin resecti on, the individual muscles 
crossing the knee joint (vastus medialis [VM], vastus inter-
medius [VI ], rectus femoris [RF], vastus lateralis [VL], 
gracilis, sartorius, semitendinosus, semimembranosus, 
long and short heads of the bi ceps femoris, and iliotibial 
band) were separated from each other using fascial planes 
as a  guide . Fibe rglass mesh was sutured to the diss ected 
end of each muscle to prevent the muscle tissue from pull-
ing apart duri ng loading. Compliant steel cables were 
sutured to  the mesh ends o f the muscle components and 
were passed throu gh adjustab le pulleys to maintain the 
physiological line of action of  each muscle [29]. Weights 
were hung from the steel cables to apply a load to the indi-
vidual mu scles. Th e maximum weig ht th at could b e 
suspended from an individual muscle was determined 
empirically. Based on this empirical limit, each component 
of the quadriceps was loaded according to the proportional 
physiological cross-sectional area of the muscle [30]. The 
total load on the ex tensor mechanism was 179.6 N, which 
was distributed such that 40, 36, and 24 percent of the load 
was suspended from the RF/VI, VL, and VM, respectively 
[29–30]. A pilot study with a single specimen was con -
ducted to ensure proper fit of  the braces during testing. A 
representative fr om the braces’ manufacturer (DJO, I nc; 
Vista, California) was present during the pilot study to 
ensure proper application, tightening, and fit of the braces 
during pilot testing. Initially, the braces fit poorly (gapping 
of the posterior portion of the brace) when only the mus-
cles of th e exten sor mechanism were load ed. The poor 
fit led to ro tation of the brace about the knee du ring knee 
flexion-extension, likely due to  the lack of normal muscle 
tension in the posterior leg. In vivo, even relaxed muscles 
are u nder tension b etween thei r origin and in sertion. In 
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order to simulate this norm al muscle tension, 0 .05 kg  
weights were suspended from each of the individual flexor 
components (total flexor load = 1.5% extensor load). Sim-
ulation of normal muscle tension allowed for a more natu-
ral fit of the braces and elim inated brace slipp age during 
testing.

The femur was secured within an aluminum cylinder 
using diaphyseal bolts and  centered withi n the cyl inder 
such that the long axis of the cylinder was representative 
of the long axis of the femur . In additi on, the f emur was 
positioned within the cylinder  so that the physiological 
quadriceps-angle (Q-angle) in the frontal plane was main-
tained. The cylinder was then fixed rigidly to the frame of 
a custom knee-joint driving device such that when the 
knee was flexed to 90º, the tibia was perpendicular to the 
floor (Figure 1). The distal leg, just proximal to the ankle 
joint, was held with a cir cular holder that  allowed small 
amplitude internal -external rotat ions and proximal-distal 
translations of the tibia relative to the femur. The circular 
holder was af fixed to an al uminum plate that e xtended 
vertically from the ci rcular holder to a servomotor attach -
ment. The plate was af fixed to the servomotor attach ment 
via a rotating joint that allowed small amplitude abduction-
adduction of the tibia relative to the femur. The entire tibial 
attachment mechanism was driven by a  se rvomotor 
(Kollmorgen, Danaher Motion; Wood Dale, Illinois), and 
a 6-axis  force sensor (JR3 Inc ; Woodland, California) 
was used to me asure the forces and moments exerted on 
the tibia throughout flexion-extension.

Contact area and pressure were measured using a 33 × 
28 mm piez oresistive electronic pres sure measuring film 
(K-Scan #4 000, Tekscan Inc; Boston, Massach usetts) 

[24,31]. Each sensor was i ndividually calibrated on  a
custom materials-testing system. A sheet of 1/4 in. (6.4 mm) 
thick neoprene rubber (McMaster-Carr; Elmhurst, Illinois) 
was placed on either side of the sensor during calibration 
to simulate t he compl iance provided by patellofemoral 
cartilage [32–3 3]. The sensor and  ru bber sheets were 
placed under the testing platform between two steel plates 
to produce an area of n early un iform pressure [32]. Fo l-
lowing preconditioning with three loads to a minimum of  
5,000 N ap plied over 10 second s, a series of fiv e loads 
ranging from 100  to 5,0 00 N were ap plied to the sensor , 
according to manu facturer guidelines. Software provided 
by the manufa cturer (Tekscan Inc; Boston, Mass achus-
setts) was used to determin e and ap ply the calib ration 
curve for each sensor.

An anteromedial parapatellar incision and removal of 
the infrapatellar fat pad were performed to gain access to 
the patellofemoral joint. The non-sensing edges of ea ch 
sensor pad were trimmed and  reinforced with flexible 
plastic and s ealed w ith clot h tape. Suture wa s pass ed 
through the reinforce d a reas of the se nsor through the  
patellofemoral joint and out through the skin proximal to 
the knee joint (Figure 2(a)). The suture was then used to 
guide the sensor into the pa tellofemoral space  and tied 
around the quadriceps tendons (Figure 2(a)). Suture was 

Figure 2.
(a) Insertion of Tekscan surface through limited parapatellar incision. 
Suture was used to guide sensor onto retropatellar su rface a nd ti ed 
around quadr iceps tendons. (b) Arthroscopy of patellofemoral joint 
space illustrating position of Tekscan sensor on retropatellar surface. 
Arthroscopy was also used to ensure that sensor remained fixed with 
respect to patella during knee flexion-extension (not shown).

Figure 1.
Experimental setup.
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also passed through the distal reinforced portion of the 
sensor and used to anchor the sensor distally to the patel-
lar tendon. The sensor wa s positioned in t he joint such 
that it covered the posterior surface of the patella. Prior to 
testing, the patellar ridge wa s manually palpated and the 
position of the ridge with respect to the sensor  was 
recorded. Small adjustments to sensor position were then 
made to ensure that the patellar ridge was located above 
the middle third of the sensor. Once the final sensor posi-
tion was determined, the suture anchors were tightened; 
the sensor was not removed from the joint between trials. 
Arthroscopy was used to ensure that the sensor remained 
fixed with respect to the pa tella during knee flexion-
extension (Figure 2(b)).

Average kne e flexion angle s for a gait c ycle were  
obtained from 30 nondisabled subjects during free-speed 
walking [34]. The initial stance phase of the gait cycle 
involves knee flexion from almost full extension to 
approximately 15°, fol lowed by extension again to near 
full extension. In the swi ng phase, the  knee flexes to 
approximately 60° of flexion and then exte nds to the  
starting position of stance phase. For each dynamic trial, 
a servomot or was used to  driv e th e k nee th rough three 
strides. The speed of motion (3 strides in 12 seconds) 
corresponded to approximately one-quarter the a verage 
self-selected stride rate [35]. Prior to test ing, each knee 
was moved through three c omplete range-of-motion 
cycles (0°–120°) for preconditioning. After precondition-
ing, three trials—a total of nine strides—were performed 
with each knee without the application of a patellofemo-
ral brace. Nonbraced testing was performed prior to brac-
ing the knees  to minimize th e effects of soft-tis sue 
changes due to application and removal of the braces.

Each knee was then tested in each of four patellofemo-
ral braces: a knee sleeve, two di fferent patellar stabili za-
tion sleeves, and a wrap-sty le patellar stabilization brace.
The knee slee ve (DonJoy Knee Support, DJO, Inc) was  
constructed of neoprene with no hole in the sleeve ov er 
the patella ( Figure 3 (a)). The first patellar stabilizati on 
sleeve (sleeve 1) (DonJoy Lateral “J ” with 1/4 in. but -
tress, DJ O, Inc) wa s c onstructed of a neoprene slee ve 
with a J-shaped buttress pad positioned inferior-lateral to 
the patella, a cutout over the patella, and a l ateral-to-
medial external sta bilization strap ( Figure 3(b) ). The 
second patellar stabilization sleeve (sleev e 2) (Don Joy 
Tru-Pull Advanced with 1/4 in. but tress, DJO, Inc) was 
constructed of a neopre ne sleeve with a C-shaped but -
tress pad positioned lateral to  the patella, a cutout over 

the patella, and a lateral -to-medial external stabi lization 
strap (Figure 3(c)). The wrap-style pat ellar stabilization 
brace (Don Joy Tru-Pull W raparound wi th 1 /4 in . b ut-
tress, DJO, Inc) consisted of a bifurcated strap with a C-
shaped buttress pad positioned lateral to the patella (Fig-
ure 3(d)). Individual braces were tested  in random order 
to el iminate ef fects from pr evious bracing conditions. 
Preconditioning cycles were p erformed prio r to testing 
with each brace, and then three trials we re performed 
with each knee in each bra ce. Finally, to facilitate com-
parison of the results of the cu rrent stud y to pu blished 
results, each knee w as a lso tested at s tatic knee flexion 
angles of 0°, 30°, 60°, 90°, and 120° for the unbraced and 
each braced condition.

Average va lues for e ach co ntact parameter (contact 
area, peak pressure, peak pressure location, and center of 
pressure) for the nine strides were obtained for each knee. 

Figure 3.
Patellofemoral braces used. (a) Knee sleeve, (b) patellar stabilization 
sleeve 1, and (c) patellar stabilization sleeve 2 are sleeve-type braces 
that cover entire distal portion of quadriceps muscle. (d) Wrap-style 
patellar stabilizatio n brace has continuous strap th at is wrapped 
around knee and extends both proximal and distal to knee.
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Contact parameters during unbraced trials were compared 
with the respective parameter for each braced trial at 5° 
increments using analysis of variance with repeated mea-
sures (each specimen had three paired conditions: 
unbraced vs knee sleeve, unbraced vs patellar stabilization 
sleeve, and unbraced vs wrap-style patellar stabilization 
brace). An alpha of 0.05 was used to test for significance. 
If significance was d etected, Tukey’s honestly significant 
difference tes t w as use d to further test for dif ferences 
among in dividual gro ups. Th e flexion v ersus extension  
portions of the gait cy cle we re compared within condi -
tions u sing a paired t-test. Prev ious stud ies h ave sho wn 
that a verage pate llofemoral conta ct a reas a re a pproxi-
mately 4 cm2 and 5.2 cm2 in unloaded and loaded kne es, 
respectively [36]. Pilot data from the current study sug-
gested a minimum dif ference in contact area  between an 
unbraced kn ee an d a b raced knee o f 0.1 cm 2, or 1.9  to 
2.5 percent of the  average pate llofemoral contact a rea. 
Assuming a standard d eviation [SD] of the dif ference in 
the response of matched pairs of 0.08 cm2, a power analy-
sis showed that nine specimen s would be needed to yield 
a power of 90 percent. Therefore, the pilot data suggested 
that an effect size of 1.25 could be detected with an exper-
imental group of nine specimens.

RESULTS

Patellofemoral contac t area move d from the distal 
articular surface of the patella proximally with increasing 
knee flexion. Testing at static knee flexion angles demon-
strated no significant differences in conta ct area, pea k 

pressure, or center of pressure between the unbraced con-
dition and any of the braced conditions.

The Table provides a summary of all results for each 
brace. For the unbraced condition, mean ± SD contact area 
varied with knee flexion angle and ranged from 0.30 ± 
0.3 cm2 at full ex tension to 2.28 ± 0.5 cm 2 at peak knee 
flexion (59°). Contact area was greater during knee flexion 
than knee extension for the unbraced knee ( p < 0.01, 
Figure 4(a)) and for all braced conditions (p < 0.001). All 
bracing conditions significant ly increased contact area 
compared with the unbraced condition  (p < 0.001, Figure 
5(a)). Both patellar stabiliz ation sleeves and the knee 
sleeve significantly increased contact area compared with 
the wrap-style patellar stabilization brace (p < 0.001). For 
all braced conditions, contact area increases were most 
pronounced during knee extension  and prior to the swing  
phase of the gait cycle.

For the unbraced condition, peak pressure varied 
with kn ee flexion  an gle, like co ntact area, an d ranged 
from 1.80 ± 1.7 MPa at full extension to 4.19 ± 1.7 MPa 
at peak knee  flexion. Peak pres sure was greate r during 
knee flexion than knee extens ion for the unbra ced knee  
(p < 0.01, Figure 4(b)) and for all braced conditions (p < 
0.001). The wrap-style patellar stabilization brace signifi-
cantly de creased pea k pressure c ompared with the  
unbraced condition and all other braced conditions ( p < 
0.001) ( Figure 5(b) ), particularly prior to the swing 
phase of the gait cycle. However, the first patellar stabili-
zation sl eeve an d the knee sleeve did not  significantly 
alter peak pre ssure compa red with the unbra ced condi -
tion. The second patellar stabilization sleeve significantly 

Table.
Summary of results fo r statistical tests. Each brace was primarily compared with unbraced condition. Dashes indicate no significant difference 
from unbraced condition. If si gnificant difference (p < 0.0 1) was found, direction of  change with respect to un braced condition is in dicated. 
Superscript symbols indicate additional significant differences identified between bracing conditions.

Condition Brace Construction Brand Name Contact
Area

Peak
Pressure

M/L
Center of
Pressure

P/D
Center of
Pressure

2 Knee Sleeve Sleeve Knee Support Increase* — Medial† Proximal*†‡

3 Stabilization Sleeve 1 Sleeve Lateral J Increase*‡ — Medial*§ Proximal*‡§

4 Stabilization Sleeve 2 Sleeve Tru-Pull 
Advanced

Increase*† Increase*†§ Medial* —

5 Stabilization Brace Wrap Tru-Pull Increase†‡§ Decrease†‡§ Medial†‡ Proximal†‡§

*Significant difference from stabilization brace (p < 0.05).
†Significant difference from stabilization sleeve 1 (p < 0.05).
‡Significant difference from stabilization sleeve 2 (p < 0.05).
§Significant difference from knee sleeve (p < 0.05).
M/L = medial/lateral, P/D = proximal/distal.
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increased peak pate llofemoral pre ssure compa red with 
the unbraced condition and al l other braced condi tions 
(p < 0.001). In addition, the wrap-style patellar stabiliza-
tion brace shifted the location of the peak pressure point 
proximally on the patell a co mpared with the  unbrac ed 
condition (p < 0.01) and all other braced conditions (p < 
0.001). All other braced conditions had no significant 
effect on the location of the peak pressure point.

For the unbraced condition ( Figure 4(c) ) and all 
braced conditions, the center of pressure shifted medially 
on the patella with increasing  knee flexion angle, begin-
ning on the lateral facet of the patella and shifting to the  
medial fac et a t approximately 30° of knee flexion. All 
braced conditions significantly shifted the center of pres-
sure medially compared with the unbraced condition (p < 
0.001, Figure 5(c) ). In additi on, all braced conditi ons, 
except the second patellar stabilization sleeve, shifted the 
center of pressure proxima lly on the  patella compared 
with the unbraced condition (p < 0.001). The knee sleeve 
shifted the center of press ure further proximally than all 
other braced conditions, particularly prior to swing phase 
of the gait cycle (Figure 5(c)).

DISCUSSION

The patellofemoral join t is  thought to transmit some 
of the highest loads in the human musculoskeletal system 
[37]. Loads during activities such as stair climbing and 
squatting have been estimated to be from 3.3 to 7.6  times 
body weight, respectively [38]. High loads from activities 
such as these may exceed the tolerance of pate llofemoral 
tissues, particularly if appl ied repetitively over long peri -
ods of time, resulting in pain [4]. Unin jured join ts have 
been shown to accept from <1 to approx imately 8 times 
body weight without sustaining clin ical injury [38]. How-
ever, sympto matic p atellofemoral j oints likely have a 
reduced c apacity to tolera te loading [4], and loads that 
would not have caused injury in an uninjured joint may 
cause further injury to a symptomatic patellofemoral joint, 
creating a vicious cy cle of loading and injury over time. 
Treatments such as bracing, infrapatellar straps, and taping 
are primarily aimed at correcting patellofemoral maltrack-
ing [12–13,24] or improving control of the joint throug h 
proprioceptive feedback [28]. However , the implied 
hypothesis is that correcting maltrackin g and improvin g 
joint control have the additional benefit of decreasing con-
tact pressure in the patellofemoral joint [24,39].

Figure 4.
(a) Mean contact area vs knee flexion ang le for unbraced conditio n.
(b) Mean peak pressure vs knee flexion angle for unbraced condition.
Red ar rows above line indicate knee flexion, wh ile black arro ws
below line indicate k nee extension. Two loops flexion/extension are
shown, which represent peaks of knee flexion during stance and swing
phases of gait , re spectively. (c) M edial/lateral l ocation of ce nter of
pressure for u nbraced condition. Do tted line represents ap proximate
location of patellar ridge and error bars standard error of the mean.
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Knee s leeves ar e c ommonly considered the s implest 
form of a knee brace, as they simply provide a compressive 
force to the entire knee join t. Previous studies have 
suggested that therapeutic effects seen with these braces are 
due to enha nced se nsory fee dback rather than ef fects on 
patellar movement [27]. Proprioceptive e ffects ha ve a lso 
been proposed as on e mechanism fo r pain reduction with 
patellar stabilization braces [27 –28]. However, in addition 
to joint compression, pate llar stabilization braces are 
designed to a pply a medially dire cted force to the patella . 
Therefore, another proposed mechanism for pain reduction 
is through reduction of joint st ress due to patellar medial 
shift [21,39]. Joint stress (or pressure) depends on the mag-
nitude of patellofemoral cont act force a nd the  are a over  
which that force is  distribut ed. Therefore, patellofemoral  
pressure ca n be reduc ed by decre asing the  force or by 
increasing patellofemoral contact area. In the current study, 
all bracing conditions increa sed patellofemoral contact 
area. However, for the  knee sleeve and the patellar stabili-
zation sleeves, the increases in c ontact are a were not  
accompanied by decreases in contact pressure. These find-
ings suggest that while the compression applied by sleeve-
type braces increases contact area, it also increases contact 
force, leading to no decrease in patellofemoral contact pres-
sure. This effect may be due to the generalized compression 
on the quadriceps tendon complex from the  sleeve design 
of the brace.

Compression of the quadriceps tendon complex may 
cause a posterior shift in the line of action of the quadri-
ceps tendons that causes the pate lla to “float” less freely 
above the t rochlear gr oove, th ereby en gaging with  th e 
groove at smaller knee flexion angles. As the lateral sur-
face of th e trochlear gro ove is more pro minent, normal 
engagement of the patella with the groove first involves 
pressure on the lateral facet of the patella. However, pre-
mature engagement of the patella with the groove causes 
the me dial surface  to be engage d ea rlier, producing a  
medial shift in the  center of pressure compared with an 
unbraced knee at the same knee flexion angle. Braces that 
provide generalized compression may be clinically useful 
in treating patellar subluxation and dislocation disorders, 
as they cause the patella to engage the trochlear groove at 
more extended knee positions, thereby not allowing the 
patella to “escape” the confines of the trochlear groove as 
easily as in an unbraced knee.

The contac t area between the  pate lla and the femur  
begins on the distal patella and migrates proximally dur-
ing knee  flexion [32,40]. Draper  et al. found that if the 
articular surf ace of t he patell a is divi ded into three 

Figure 5.
(a) Dynamic results for  pa tellofemoral contact area over stride. All 
bracing conditions significantly increased patellofemoral contact area 
when compared with unbraced condition (p < 0.001). (b) Peak patel-
lofemoral pressure over st ride. Wrap-style patellar stabilization brace 
significantly decreased peak pressure compared with unbraced condi-
tion and  all other braced conditio ns ( p < 0.001). (c) Medial/lateral 
shift of center of pressur e over st ride. All braces shifted  center  of  
pressure significantly in  medial direction compar ed with unbraced  
condition (p < 0.01). Dashed line indicates knee flexion angle plotted 
on right y-axis, and dark grey shading indicates standard error of the 
mean for unbraced condition. Vertical dotted lines indicate standard  
markers of ga it c ycle: c ontralateral toe-off, foot strike, and to e-off, 
respectively. Light grey shading indicates swing phase of gait cycle.
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regions—proximal, middle, and distal—the middle region 
is the area with the thickest articular cartilage [12]. Li et al. 
showed that thinner cartilage results in higher stress for the 
same applied load [15]. In the curren t study , both a 
decrease in mag nitude and a proximal shift in location of 
the peak patellofemoral pressure with the wrap-style patel-
lar stabilization brace suggest that during knee flexion, the 
wrap brace shifted the location of the highest pressures to a 
region of the patella with increased articular cartilage 
thickness. Furthermore, Li et al. showed that a 10 percent 
reduction in cartilage t hickness leads to a 10 percent 
increase in p eak h ydrostatic pressure [15]. Therefore, 
small changes in the location of the areas of highest pres -
sure, like those seen with the wrap-style brace, could likely 
lead to clinical decreases in PFP symptoms. The shift in 
location and magnitud e of peak  pressure with application 
of the wrap-style patellar stabilization brace suggests 
wrap-style braces may be e ffective for treatment of disor -
ders associated with degenerative cartilage changes.

Quadriceps muscle force has been reported to be 647 N 
during walking and 1,923 N during stair climbing [41]. The 
quadriceps load of 179.6 N used in the present study is sim-
ilar to those used in previous  studies [31,42] and is similar 
to those applied in non-weight-bearing exercise. However , 
it remains uncertain whether increasing the applied quadri-
ceps muscle load would have resulted in increased contact 
pressures in the patellofemoral joint [43], as Eilerman et al. 
found no d ifference in patellofemoral con tact pressures 
with quadriceps muscle forces at either 647 N or 1,923 N 
[41]. Finally, th e most im portant info rmation obtained  in  
this study is the relative change in pressure distribution  
between the unbraced and braced conditions. Relative pres-
sure distribution has been shown to remain consistent with 
increasing load [42].

A limitation of this study is that some patients with 
PFP present wit h altered patellof emoral kinematics and 
architecture, which are not represe nted in this  study. In 
addition, the ground reactio n forces due to axial limb 
loading were not included in the current study. However, 
results from this stud y for a r ange of static kn ee flexion 
angles were similar to those of previous studies, both in 
vitro and in vivo [16,44–45]. Braces and  taping may b e 
effective at correcting abnormal patellofemoral kinemat-
ics only in the subset  of patients with PFP who exhibit 
maltracking. Therefore, it is rea sonable to a ssume tha t 
simulating the effects of bracing on a normal knee would 
only tend to underestimate the effect size when compared 
to patients with PFP and maltr acking. Finally, the intro -
duction of the pressure sens or into the pat ellofemoral 

joint may have altered patellofemoral kinematics. How-
ever, the patterns of patellofemoral contact demonstrated 
in the unbraced knee i n this  study were similar to those 
reported by Huberti and Hayes [46–47] and Marder et al. 
[48], who used pres sure-sensitive film that had an effec-
tive thickness approximately 3 times greate r than that of 
the sensor used in the c urrent study [46–49]. For all the 
comparisons in the current study, the pressure sensor was 
inserted into the joint prior to testing and it s placement 
was not altered during the experiment. There fore, differ-
ences in contact characteristics with and without bracing 
represent relative measurements for w hich the effects of 
the pressure sensor on joint kinematics were constant.

CONCLUSIONS

Conservative management of PFP often includes 
bracing treatment. Clinical improvements in pain have 
been reported with bracing  [8–9,20,27,50–51]; however, 
the specific mechanism by which bracing reduces pain is 
not well un derstood. Th e pu rpose of this s tudy w as to  
evaluate the hypothesis that patellofemoral braces 
decrease pea k press ure on the retropatellar surface 
through an incre ase in pate llofemoral contac t area. All 
braces increa sed contac t area ; however , only the  wrap-
style patellar stabilization brace decreased peak pressure 
in the patellofemoral joint.

These findings  suggest that while the  compres sion 
applied by sleeve-type brace s inc reases contac t area, it 
also increa ses contact force, le ading to no decre ase in 
patellofemoral contac t pressure. This e ffect may be due  
to the generalized compression on the quadriceps tendon 
complex from the sleeve design of the brace. Braces that 
provide generalized compression may be clinically useful 
in treating patellar subl uxation and dislocation disorders 
because they c ause th e p atella to  en gage the troc hlear 
groove at mo re ext ended k nee positi ons, th ereby n ot 
allowing the patella to “e scape” the confines of the tro -
chlear groove as easily as in an unbraced knee.

Both a decrease in magnitude and a proximal shift in 
location of the peak patello femoral pressure with the 
wrap-style patellar stabilization brace suggest that during 
knee flexion, the wrap brace shifted the location of the 
highest pressures to a region of the patella with increased 
articular car tilage thickness. These results suggest that 
wrap-style braces may be effective for treatment of disor-
ders associated with degenerative cartilage changes.
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